

1 **Temperature exerted no influence on the organic carbon
2 isotope of surface soil along the isopleth of 400 mm mean
3 annual precipitation in China**

4

5 Yufu Jia, Guoan Wang, Qiqi Tan, and Zixun Chen

6 ¹College of Resources and Environmental Sciences, China Agricultural University,
7 Beijing 100193, China

8

9

10

11

12

13

14 Author for correspondence:

15 Guoan Wang

16 Tel: +086-10-62733942

17 Email:gawang@cau.edu.cn

18

19

20

21

22

23 **Abstract**

24 Soil organic carbon is the largest pool of terrestrial ecosystem and its carbon isotope
25 composition is affected by many factors. However, the influence of environmental
26 factors, especially temperature, on soil organic carbon isotope ($\delta^{13}\text{C}_{\text{SOM}}$) is poorly
27 constrained. This impedes interpretations and application of variability of organic
28 carbon isotope in reconstructions of paleoclimate and paleoecology and global carbon
29 cycling. With a considerable temperature gradient along the 400 mm isohyet (isopleth
30 of mean annual precipitation – MAP) in China, this isohyet provides ideal
31 experimental sites for studying the influence of temperature on soil organic carbon
32 isotope. In this study, the effect of temperature on surface soil $\delta^{13}\text{C}$ was assessed by a
33 comprehensive investigation from 27 sites across a temperature gradient along the
34 isohyet. This work demonstrates that temperature did not play a role in soil $\delta^{13}\text{C}$, this
35 suggests that organic carbon isotopes in sediments cannot be used for the
36 paleotemperature reconstruction, and that the effect of temperature on organic carbon
37 isotopes can be neglected in the reconstruction of paleoclimate and paleovegetation.
38 Multiple regression with MAT (mean annual temperature), MAP, altitude, latitude
39 and longitude as independent variables, and $\delta^{13}\text{C}_{\text{SOM}}$ as the dependent variable, shows
40 that the five environmental factors in total account for only 9% soil $\delta^{13}\text{C}$ variance.
41 However, One-way ANOVA analyses suggest that soil and vegetation types are
42 significant influential factors on soil $\delta^{13}\text{C}$. Multiple regressions in which above five
43 environmental factors were taken as quantitative variables, vegetation type, Chinese
44 nomenclature soil type and WRB soil type were introduced as dummy variables
45 separately, show that 36.2%, 37.4%, 29.7% of the variability in soil $\delta^{13}\text{C}$ are
46 explained, respectively. Compared to the multiple regression in which only
47 quantitative environmental variables were introduced, the multiple regressions in
48 which soil and vegetation were also introduced explain more variance, suggesting that
49 soil type and vegetation type really exerted significant influences on $\delta^{13}\text{C}_{\text{SOM}}$.

50

51

52 1. Introduction

53 Global climate change has recently received a great deal of attention, and effective
54 predictions of future climate change depend on the relevant information from climate
55 in the geological past. Over recent decades, stable carbon isotopes in sediments, such
56 as loess, paleosol, lacustrine and marine sediments, have been widely used to
57 reconstruct paleovegetation and paleoenvironments, and provided important insights
58 into patterns of past climate and environment changes. For examples, many
59 researchers have used organic carbon isotopes of loess to reconstruct paleovegetation
60 and paleoprecipitation. Vidic and Montañez (2004) conducted a reconstruction of
61 paleovegetation at the central Chinese Loess Plateau during the Last Glaciation (LG)
62 and Holocene by using the organic carbon isotopes in loess from Jiaodao, Shanxi
63 Province. Hatté and Guiot (2005) carried out a palaeoprecipitation reconstruction by
64 inverse modelling using the organic carbon isotopic signal of the Nußloch loess
65 sequence (Rhine Valley, Germany). Rao et al. (2013) reconstructed a high-resolution
66 summer precipitation variations in the western Chinese Loess Plateau during the Last
67 Glaciation using a well-dated organic carbon isotopic dataset. Yang et al. (2015)
68 derived a minimum 300 km northwestward migration of the monsoon rain belt from
69 the Last Glacial Maximum to the Mid-Holocene using the organic carbon isotopes
70 from 21 loess sections across the Loess Plateau. However, to our knowledge, almost
71 no researchers have conducted paleotemperature reconstructions using organic carbon
72 isotope records of loess and paleosol, because it has been argued that temperature
73 exerts slight, or even no influence on $\delta^{13}\text{C}_{\text{SOM}}$. While this statement may be likely, it

74 needs to be demonstrated because only few studies have addressed the influence of
75 temperature on organic carbon isotopes of modern surface soil; furthermore, these
76 studies do not appear to result in a conclusive statement. Lee et al. (2005) and Feng et
77 al. (2008) both reported no relationship between temperature and surface soil $\delta^{13}\text{C}$ in
78 central-east Asia. However, Lu et al. (2004) discovered a nonlinear relationship
79 between annual mean temperature (MAT) and $\delta^{13}\text{C}_{\text{SOM}}$ from the Qinghai-Tibetan
80 Plateau; Sage et al. (1999) compiled the data from Bird and Pousai (1997) and also
81 found a nonlinear trend for the variation in $\delta^{13}\text{C}_{\text{SOM}}$ along a temperature gradient in
82 Australian grasslands and savannas.

83 Plant residues are the most important source of soil organic matter. $\delta^{13}\text{C}_{\text{SOM}}$ is
84 generally close to plant carbon isotope despite isotopic fractionation during
85 decomposition of organic matter (Nadelhoffer and Fry, 1988; Balesdent et al., 1993;
86 Ågren et al., 1996; Fernandez et al., 2003; Wynn, 2007). Thus, the influential factors
87 of plants $\delta^{13}\text{C}$ might also play a role in $\delta^{13}\text{C}_{\text{SOM}}$, $\delta^{13}\text{C}$ in plants, especially C_3 plants, is
88 tightly associated with precipitation (Diefendorf et al., 2010; Kohn, 2010), so,
89 precipitation should have influence on soil $\delta^{13}\text{C}$. In addition to effect of precipitation,
90 many factors, such as temperature, air pressure, atmospheric CO_2 concentration,
91 altitude, latitude and longitude, may also exert influences on variance in plants $\delta^{13}\text{C}$
92 (Körner et al., 1991; Hultine and Marshall, 2000; Zhu et al., 2010; Xu et al., 2015).
93 Although patterns of variation in plants $\delta^{13}\text{C}$ with temperature are unresolved so far
94 (e.g. Schleser et al., 1999; McCarroll and Loader, 2004; Treydte et al., 2007; Wang et
95 al., 2013), it has been widely accepted that, even if temperature has effect on plants

96 $\delta^{13}\text{C}$, this effect is slight. So, if the ^{13}C enrichment during SOM decomposition is a
97 constant value, we expect a slight or no influence of temperature on soil $\delta^{13}\text{C}$.
98 However, the fact is that this ^{13}C -enrichment is affected by environmental and biotic
99 factors (Wang et al., 2015). Thus, it is difficult to expect whether or how temperature
100 affects soil $\delta^{13}\text{C}$, and it needs specific investigations of focusing on this issue.
101 Although the relationship between temperature and $\delta^{13}\text{C}_{\text{SOM}}$ has been investigated in
102 these previous studies mentioned above, these studies were unable to effectively
103 separate the influence of temperature from the effect of precipitation. Thus, new
104 investigations are necessary. The present study includes an intensive investigation of
105 the variation in $\delta^{13}\text{C}_{\text{SOM}}$ with temperature across a temperature gradient along the 400
106 mm isohyet (isopleth of mean annual precipitation - MAP) in China. We sampled
107 surface soil along the specific isohyet to minimize the effect of precipitation changes
108 on $\delta^{13}\text{C}_{\text{SOM}}$.
109 In addition, there are no meteorological stations near most of the sampling sites in
110 the previous studies mentioned above; thus, they had to interpolate meteorological
111 data, which could be unrealistic in regions with strong topographical variability. This
112 interpolation could produce errors in the relationships between temperature and
113 $\delta^{13}\text{C}_{\text{SOM}}$ established in these studies. In the present investigation, we collected samples
114 only at those sites with meteorological stations; thus, the climatic data that we
115 obtained from these stations are probably more reliable compared with the
116 pseudo-data derived by interpolation.
117

118 **2. Materials and methods**

119 **2.1. Study site**

120 In this study, we set up a transect along the 400 mm isohyet from LangKaZi (site 1,
121 29°3.309'N, 90°23.469'E), on the Qinghai-Tibetan Plateau in southwest China, to
122 BeiJiCun (Site27, 53°17.458'N, 122°8.752'E), in Heilongjiang Province in northeast
123 China (Fig.1, Table 1). The straight-line distance between the above two sites is about
124 6000 km. Twenty-seven (27) sampling sites were set along the transect. Among these
125 sampling sites, 10 sites are located on the Qinghai-Tibetan Plateau, and the others are
126 in north China. BeiJiCun and KuDuEr have the lowest MAT of -5.5 °C and ShenMu
127 has the highest MAT of +8.9 °C. The average MAP of these sites is 402 mm. In north
128 China, rainfall from June to September accounts for approximately 80% of the total
129 annual precipitation, and the dominant control over the amount of precipitation is the
130 strength of the East-Asian monsoon system. In the Qinghai-Tibetan Plateau, however,
131 precipitation is associated with both the Southwest monsoon and the Qinghai-Tibetan
132 Plateau monsoon, and approximately 80% - 90% rainfall occurs in the summer season
133 (from May to October).

134

135 Fig.1

136 Table 1

137 **2.2 soil sampling**

138 Soil samples were collected in the summer of 2013 between July 12th and August
139 30th. In order to avoid disturbance of human activities, sample sites are 5-7

140 kilometers far from the towns where the meteorological stations are located. We set
141 three quadrats (0.5 m×0.5 m) within 200 m² to collect surface mineral soil (0-5 cm)
142 using a ring knife. The O-horizon, including litters, moders and mors were removed
143 before collecting mineral soil. About 10 g air dried soils were sieved at 2 mm. Plant
144 fragments and the soil fraction coarser than 2 mm were removed. The rest of the soil
145 samples were immersed using excessive HCl (1 mol/L) for 24 h. In order to ensure
146 that all carbonate was cleared, we conducted artificial stirring 4 times during the
147 immersion. Then, the sample was washed to neutrality using distilled water. Finally it
148 was oven-dried at 50°C and ground. Carbon isotope ratios were determined on a
149 Delta^{Plus}XP mass spectrometer (Thermo Scientific, Bremen, Germany) coupled with
150 an elemental analyzer (FlashEA 1112; CE Instruments, Wigan, UK) in continuous
151 flow mode. The elemental analyzer combustion temperature was 1020 °C.

152 The carbon isotopic ratios are reported in delta notation relative to the V-PDB
153 standard using the equation:

$$\delta^{13}\text{C} = (\text{R}_{\text{sample}}/\text{R}_{\text{standard}} - 1) \times 1000 \quad (1)$$

154 where $\delta^{13}\text{C}$ is the carbon isotope ratio of the sample (‰), and R_{sample} and $\text{R}_{\text{standard}}$ are
155 the $^{13}\text{C}/^{12}\text{C}$ ratios of the sample and the standard, respectively. For this measurement,
156 we obtained a standard deviation of less than 0.15‰ among replicate measurements
157 of the same soil sample.

159

160 **3. Results**

161 Except for one $\delta^{13}\text{C}_{\text{SOM}}$ value (-18.8‰), all other data range from -20.4‰ to -27.1‰

162 with a mean value of -23.3‰ (n = 80, s.d. = 1.45). Multiple regression with MAT,
163 MAP, altitude, latitude and longitude as independent variables, and $\delta^{13}\text{C}_{\text{SOM}}$ as the
164 dependent variable, shows that only 9% of the variability in soil $\delta^{13}\text{C}$ can be explained
165 as a linear combination of all five environmental factors ($p = 0.205$) (Table 2).
166 Considering the possibility of correlations among the five explanatory variables,
167 stepwise regression was used to eliminate the potential influence of collinearity
168 among them. Variables were incorporated into the model with P -value < 0.05 and
169 exclude with P -value > 0.1. Stepwise regression of soil $\delta^{13}\text{C}$ in the model consisting
170 only of latitude ($R^2 = 0.077$, $p = 0.012$). In order to constrain the relationship between
171 soil $\delta^{13}\text{C}$ and each environmental factor better, bivariate correlation analyses of soil
172 $\delta^{13}\text{C}$ against some environmental factors were conducted. The bivariate correlation
173 analyses show that $\delta^{13}\text{C}_{\text{SOM}}$ is not related to MAT ($p = 0.114$) or SMT ($p = 0.697$)
174 along the isohyet (Fig. 2a, b). In addition, in order to determine further the response of
175 $\delta^{13}\text{C}_{\text{SOM}}$ to temperature, we considered three subsets of our soil samples defined
176 according to the climate, topography or vegetation type: the Qinghai–Tibetan Plateau
177 (mainly alpine meadow, including 10 sites), steppe or grassland (11 sites) and
178 coniferous forest (6 sites) (Table 1). Bivariate correlation analyses within these
179 subsets also show no relationship between $\delta^{13}\text{C}_{\text{SOM}}$ and MAT for all categories. The
180 correlation analysis of $\delta^{13}\text{C}_{\text{SOM}}$ vs. altitude is shown in Fig. 3, which displays no
181 relationship ($p = 0.132$). Although longitude is not found to exert influence on
182 $\delta^{13}\text{C}_{\text{SOM}}$ in the above stepwise regression, bivariate correlation analyses show that
183 latitude and longitude both are negatively related to $\delta^{13}\text{C}_{\text{SOM}}$ ($p = 0.012$ and 0.034,

184 respectively) (Fig. 4a,b).

185 In addition to effects of quantifiable environmental factors, qualitative factors, such
186 as soil type and vegetation type, may have influence on $\delta^{13}\text{C}_{\text{SOM}}$. Varied concepts
187 have been introduced in soil taxonomy, leaving varied soil nomenclatures in use. In
188 this study we adopted Chinese soil nomenclature and the World Reference Base
189 (WRB) to describe the observed soil. The soil was divided into 8 types and 6 types
190 based on the Chinese Soil Taxonomy and WRB, respectively (Table 1). One-way
191 ANOVA analyses suggest that soil type and vegetation type both played a significant
192 role in $\delta^{13}\text{C}_{\text{SOM}}$ ($p = 0.002$ for soil types based on the Chinese Soil Taxonomy, $p =$
193 0.003 for soil type based on WRB and $p = 0.001$ for vegetation types) (Fig. 5).

194 In order to constrain further the effects of soil type and vegetation type on $\delta^{13}\text{C}_{\text{SOM}}$,
195 multiple regressions with soil type and vegetation type as dummy variables were
196 conducted. Considering the tight relationship between soil type and vegetation type,
197 especially in Chinese soil taxonomy, the soil variable and the vegetation variable were
198 separately introduced into the statistical analyses. Multiple regression, in which the
199 above five explanatory environmental factors were taken as quantitative variables and
200 the 8 soil types of the Chinese nomenclature as values of a dummy variable, shows
201 that environmental factors and soil types in total account for 37.4% soil $\delta^{13}\text{C}$ variance
202 ($p < 0.001$) (Table 2). 29.7% ($p = 0.003$) of the variability is explained using the 6 soil
203 types based on WRB rather than the Chinese nomenclature (Table 2). Similarly,
204 multiple regression with vegetation types as dummy variables shows that the five
205 environmental factors and vegetation types in total can explain 36.2% of the

206 variability in soil $\delta^{13}\text{C}$ ($p = 0.001$) (Table 2). Compared to the multiple regressions in
207 which only quantitative environmental variables were introduced, the multiple
208 regressions in which soil and vegetation were also introduced explain more variance,
209 suggesting that soil type and vegetation type really played a significant role in
210 $\delta^{13}\text{C}_{\text{SOM}}$ variability.

211 Table 2

212 Fig.2a, b

213 Fig.3

214 Fig.4a, b

215 Fig.5

216

217 **4. Discussion**

218 Soil $\delta^{13}\text{C}$ depends on plants $\delta^{13}\text{C}$ and carbon isotopic fractionation during organic
219 matter decomposition. $\delta^{13}\text{C}$ values of C_3 plants vary between $-22\text{\textperthousand}$ and $-34\text{\textperthousand}$ with a
220 mean of $-27\text{\textperthousand}$, and C_4 plants range from $-9\text{\textperthousand}$ to $-19\text{\textperthousand}$ with a mean of $-13\text{\textperthousand}$
221 (Dienes, 1980). Carbon isotope fractionation occurs in the process of plant litter
222 decomposition into soil organic matter in most environments, especially in non-arid
223 environments, causing ^{13}C -enrichment in soil organic matter compared with the plant
224 sources (Nadelhoffer, 1988; Balesdent et al., 1993; Ågren et al., 1996; Fernandez et
225 al., 2003; Wynn et al., 2005; Wynn, 2007). An intensive investigation of isotope
226 fractionation during organic matter decomposition, which was conducted in Mount
227 Gongga, an area in the Qinghai-Tibetan Plateau dominated by C_3 vegetation with

228 herbs, shrubs and trees, showed that the mean ^{13}C -enrichment in surface soil (0-5 cm
229 depth) relative to the vegetation was 2.87‰ (Chen et al., 2009). Another
230 investigation of 13 soil profiles from the Tibetan Plateau and north China showed the
231 $\delta^{13}\text{C}$ difference between surface soil (0-5 cm depth) and the original biomass varied
232 from 0.6 to 3.5‰ with a mean of 1.8‰ (Wang et al., 2008). Thus, the $\delta^{13}\text{C}_{\text{SOM}}$ data set
233 of this study ($\delta^{13}\text{C}_{\text{SOM}}$ ranges from -20.4‰ to -27.1‰) indicates that the modern
234 terrestrial ecosystem along the isohyet is greatly dominated by C_3 plants. This result is
235 consistent with the observations of vegetation along the isohyet done in our previous
236 study (Wang et al., 2013) and in this present study. Yin and Li (1997), Lu et al. (2004)
237 and Wang et al. (2004) have reported that a small number of C_4 species occurred in
238 the Qinghai-Tibetan Plateau; however, in this present study we found no C_4 plants in
239 the Qinghai-Tibetan Plateau. We are also very surprised at such high soil $\delta^{13}\text{C}$ values
240 at RiKaZe (site 2) (Fig.3 and Table 1) because only four C_3 plants grow there, no C_4
241 species. The abnormal observation suggests that a very high carbon isotope
242 fractionation with SOM degradation have taken place in the local ecosystem.
243 Although the mechanism accounted for the unusually high isotopic fractionation
244 remains unclear, it is not surprising. For example, Wynn (2007) has reported that the
245 fractionation leaved soil organic carbon ^{13}C -enriched by up to ~6‰ with respect to
246 the original biomass. Rao et al. (2008) has suggested that mid-latitude area
247 (31°N-40°N) in east China provides relatively favorable condition for C_4 plant growth.
248 But we observed that a small number of C_4 species occur only in the temperate
249 meadow steppe and the temperate typical steppe in north China, while no C_4 species

250 are distributed in the coniferous forests in north China. In short, the contribution of C₄
251 biomass to the local vegetation along the isohyet is very low, and can be neglected.
252 The MAT, MAP, altitude, latitude and longitude, combined, are responsible for
253 only 9% variability in soil $\delta^{13}\text{C}$ in the multiple regression model, suggesting that the
254 contribution of the five environmental factors to the soil $\delta^{13}\text{C}$ variance is very small.
255 Our previous study conducted along the isohyet resulted in a strong positive
256 relationship between C₃ plant $\delta^{13}\text{C}$ and MAT with a coefficient of 0.104‰/°C (Wang
257 et al., 2013). The difference between maximum and minimum temperature along the
258 isohyet is 15°C, so the greatest possible effect of temperature on plant $\delta^{13}\text{C}$ along the
259 temperature gradient is 1.56‰, which is not very great. Since the main source of soil
260 organic matter along the isohyet is C₃ plants, the induced variance in soil $\delta^{13}\text{C}$ by
261 plant $\delta^{13}\text{C}$ also cannot be very great. On the other hand, although the ^{13}C -enrichment
262 with SOM degradation follows a Rayleigh distillation process (Wynn, 2007), our
263 recent study shows that temperature does not influence carbon isotopic fractionation
264 during decomposition (Wang et al., 2015), which is also a reason for the lack of a
265 relationship between soil $\delta^{13}\text{C}$ and temperature. Feng et al. (2008) and Lee et al. (2005)
266 respectively, reported no relationships between soil $\delta^{13}\text{C}$ and MAT and SMT, which
267 is consistent with our result. Their field campaigns were conducted in central Asia,
268 which is also dominated by C₃ plants, similar to the area along the 400 mm isohyet.
269 This is the reason why the same pattern exists in central Asia and the area along the
270 400 mm isohyet.
271 The observations in Bird and Pousai (1997) and Sage et al. (1999) appear to be

272 inconsistent with our findings; they found a nonlinear relationship between soil $\delta^{13}\text{C}$
273 and MAT in Australian grasslands. However, if considering only soil with pure C_3
274 plants (MAT is below 16°C), soil $\delta^{13}\text{C}$ and temperature are not related in Australian
275 grasslands, which is in agreement with our result. Below 15°C, C_4 contribution to
276 productivity in Australian grasslands is negligible, whereas above 23 °C, C_3
277 contribution is negligible; Between 14°C and 23°C, soil $\delta^{13}\text{C}$ is positively correlated
278 with MAT, indicating C_4 representation increasing with MAT (Sage et al., 1999). Lu
279 et al. (2004) also reported a nonlinear relationship between soil $\delta^{13}\text{C}$ and MAT.
280 Similarly, if the soil data with C_4 plants are excluded from the nonlinear correlation,
281 soil $\delta^{13}\text{C}$ is also not related to MAT in Lu et al. (2004) (see Fig.5b in Lu et al., 2004).
282 Thus, this present study and the previous observations are consistent in showing that
283 in a terrestrial ecosystem in which the vegetation is dominated by C_3 plants,
284 temperature does not influence soil $\delta^{13}\text{C}$ variance.
285 This study shows that the contribution of precipitation to the variability in soil $\delta^{13}\text{C}$
286 is neglected. The reason for this is that the soil was sampled along the 400 mm
287 isohyet, and the MAP difference among sites is very small. It should be pointed out
288 here that the no MAP influence on the soil $\delta^{13}\text{C}$ does not mean no moisture control of
289 the soil $\delta^{13}\text{C}$. Because the temperature varies greatly across the temperature gradient
290 although the MAP is almost the same for each sampling site ; this would cause a big
291 difference in relative humidity among sites. We expect that relative humidity would
292 explain a great variability in soil $\delta^{13}\text{C}$. But we did not take relative humidity as an
293 explanatory variable in the statistical analyses, because we lack the complete data of

294 relative humidity, and we do not want to use the pseudo-data derived by
295 interpolation.

296 Although stepwise regression and correlation analysis both show a significant
297 influence of latitude on soil $\delta^{13}\text{C}$, the five environmental variables including latitude
298 were responsible for only 9% variability in soil $\delta^{13}\text{C}$ in a multiple regression model
299 (Table 2), suggesting that the contribution of latitude to soil $\delta^{13}\text{C}$ was also slight. This
300 study shows a negative correlation between latitude and $\delta^{13}\text{C}_{\text{SOM}}$ ($p=0.012$). Bird and
301 Pausai (1997) and Tieszen et al. (1979) reported a similar pattern. Latitude is a
302 comprehensive environmental factor, and change in latitude can bring about changes
303 in other environmental factors, such as temperature, irradiation, cloud amount, and
304 moisture, but temperature or irradiation should be most strongly related to latitude,
305 and obviously change with latitude. The observed significant relationship between
306 latitude and soil $\delta^{13}\text{C}$ (Fig.4a) suggests that environmental factors other than
307 temperature might contribute more or less to the variance in soil $\delta^{13}\text{C}$.

308 Vegetation type control of the soil $\delta^{13}\text{C}$ mainly reflected the effects of life-form on
309 plant $\delta^{13}\text{C}$ and substrate quality on isotope fractionation during organic matter
310 decomposition. Communities in which life-form of the dominant plants is similar are
311 generally treated as the same vegetation type. Plant $\delta^{13}\text{C}$ is tightly related to life-form
312 (Diefendorf et al., 2010; Ehleringer and Cooper, 1988) and this causes $\delta^{13}\text{C}$
313 differences among varying vegetation types, consequently resulting in the observed
314 effect of vegetation type on the soil $\delta^{13}\text{C}$.

315 Substrate quality partly quantifies how easily organic carbon is used by soil

316 microbes (Poage and Feng, 2004). It can be related to plant type and is often defined
317 using a C/N ratio, lignin content, cellulose content, and/or lignin content/N ratio
318 (Melillo et al., 1989; Gartern et al., 2000). Our study in Mount Gongga, China,
319 showed that litter quality play a significant role in isotope fractionation during organic
320 matter decomposition, and the carbon isotope fractionation factor, α , increases with
321 litter quality (Wang et al., 2015). Thus, the isotope fractionation factor should be
322 different among varying sites because litter quality is dependent on vegetation and
323 this makes soil change its $\delta^{13}\text{C}$ with vegetation type.

324 Control of soil type on soil $\delta^{13}\text{C}$ could be associated with the effect of soil type on
325 isotope fractionation during organic matter decomposition, and involve at least two
326 mechanisms. (1) Properties and compositions of microbial decomposer communities
327 are dependent on soil type (Gelsomino et al., 1999). Different microbes could have
328 different metabolic pathways even when they decompose the same organic compound
329 (Macko and Estep, 1984), and the extent of isotope fractionation during
330 decomposition may be tightly related to the metabolic pathways of microbes (Macko
331 and Estep, 1984). For example, Morasch et al. (2001) observed a greater hydrogen
332 isotope fractionation for toluene degradation in growth experiments with the aerobic
333 bacterium *P. putida* mt-2 and less fractionation in toluene degradation by anaerobic
334 bacteria. (2) Physical and chemical properties, such as pH, particle size fraction,
335 water-holding capacity, display striking differences among soil types and this causes
336 organic compounds to be decayed at different rate in different soil environments. The
337 magnitude of isotope fractionation during decomposition is linked to degree of

338 organic matter decomposition (Feng, 2002), thus, soil type plays a significant role in
339 fractionation.

340

341 **5. Conclusions**

342 The present study measured organic carbon isotopes in surface soil along a 400 mm
343 isohyet of mean annual precipitation in China, and observed that soil type and
344 vegetation type both had significant influence on soil organic carbon isotopes.
345 However, temperature is found to have no observable impact on $\delta^{13}\text{C}_{\text{SOM}}$, suggesting
346 that $\delta^{13}\text{C}$ signals in sediments cannot be used for the reconstruction of temperature,
347 and that the effect of temperature on $\delta^{13}\text{C}_{\text{SOM}}$ could be neglected in the reconstruction
348 of paleoclimate and paleovegetation using carbon isotopes of soil organic matter.

349

350

351 **Acknowledgments**

352 This research was supported by grants from the National Basic Research Program
353 (2014CB954202), the National Natural Science Foundation of China (No. 41272193)
354 and the China Scholarship Council (File No.201506355021). We would like to thank
355 Ma Yan for analyzing stable carbon isotope ratios in the Isotope Lab at the College of
356 Resources and Environment, China Agricultural University; we would also like to
357 thank Professor Eric S. Posmentier in the Department of Earth Sciences of Dartmouth
358 College for his constructive suggestions and English editing for this manuscript.

359

360

361 **References**

362 Ågren, G.I., Bosatta, E., and Balesdent, J.: Isotope discrimination during
363 decomposition of organic matter: A theoretical analysis. *Soil Sci. Soc. Am. J.*, 60,
364 1121–1126, 1996.

365 Balesdent, J., Girardin, C., and Mariotti, A.: Site-related $\delta^{13}\text{C}$ of tree leaves and soil
366 organic matter in a temperate forest. *Ecology*, 74, 1713–1721, 1993.

367 Bird, M.I., and Pousai, P.: Variations of delta C-13 in the surface soil organic carbon
368 pool. *Global Biogeochemical Cycles*, 11, 313–322, 1997.

369 Chen, P.N., Wang, G.A., Han, J.M., Liu, X.J., and Liu, M.: $\delta^{13}\text{C}$ difference between
370 plants and soil organic matter along the eastern slope of Mount Gongga. *Chinese
371 Science Bulletin*, doi:10.1007/s11434-009-0405-y, 2009.

372 Deines, P. The isotopic composition of reduced organic carbon. *Handbook of
373 environmental isotope geochemistry I, The terrestrial environment* (eds. by P. Fritz &
374 J.C. Fontes), pp. 329 –406. Elsevier, Amsterdam, 1980.

375 Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L., Freeman, K.H.: Global
376 patterns in leaf ^{13}C discrimination and implications for studies of past and future
377 climate. *Proceedings of the National Academy of the Sciences of the United States of
378 America*, 107, 5738–5743, 2010.

379 Ehleringer, J. R., and Cooper, T. A.: Correlations between carbon isotope ratio and
380 microhabitat in desert plants. *Oecologia*, 76, 62–66, 1988.

381 Feng, X.H.: A theoretical analysis of carbon isotope evolution of decomposing plant

382 litters and soil organic matter. *Global Biogeochemical Cycles*, 16, 4–1119. doi: 10.
383 1029/2002GB001867, 2002.

384 Feng, Z.D., Wang, L.X., Ji, Y.H., Guo, L.L., Lee, X.Q., and Dworkin, S. I.: Climatic
385 dependency of soil organic carbon isotopic composition along the S-N Transect from
386 34°N to 52°N in central-east Asia. *Palaeogeography Palaeoclimatology Palaeoecology*,
387 257, 335–343, 2008.

388 Fernandez, I., Mahieu, N., and Cadisch, G.: Carbon isotopic fractionation during
389 decomposition of plant materials of different quality. *Glo. Biogeochem. Cyc.*, 17,
390 1075, doi: 10. 1029/2001GB001834, 2003.

391 Gartern, C.T.Jr., Cooper, L.W., Post, W.M., and Hanson, P.J.: Climate controls on
392 forest soil C isotope ratios in the Southern Appalachian Mountains. *Ecology*,
393 81,1108–1119,2000.

394 Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G., and van Elsasb, J.D.: Assessment of
395 bacterial community structure in soil by polymerase chain reaction and denaturing
396 gradient gel electrophoresis. *Journal of Microbiological Methods*, 38,1–15, 1999.

397 Hatté C., and Guiot, J.: Palaeoprecipitation reconstruction by inverse modelling using
398 the isotopic signal of loess organic matter: application to the Nußloch loess sequence
399 (Rhine Valley, Germany). *Climate Dynamics*, 25, 315-327,
400 doi:10.1007/s00382-005-0034-3, 2005.

401 Hultine, K.R., and Marshall, J.D.: Altitude trends in conifer leaf morphology and
402 stable carbon isotope composition. *Oecologia*, 123, 32–40, 2000.

403 Kohn, M.J.: Carbon isotope compositions of terrestrial C₃ plants as indicators of

404 (paleo)ecology and (paleo)climate. *Proceedings of the National Academy of Sciences*
405 of the United States of America

406 Körner, C., Farquhar, G.D., and Wong, S.C.: Carbon isotope discrimination by plants
407 follows latitudinal and altitude trends. *Oecologia*, 88, 30-40, 1991.

408 Lee, X.Q., Feng, Z.D., Guo, L.L., Wang, L.X., Jin, L.Y., Huang, Y.S., Chopping, M.,
409 Huang, D.K., Jiang, W., and Jiang, Q.: Carbon isotope of bulk organic matter: A
410 proxy for precipitation in the arid and semiarid central East Asia. *Global*
411 *Biogeochemical cycles*: 19, GB4010, doi: 10.1029/2004GB002303, 2005.

412 Lu, H.Y., Wu, N.Q., Gu, Z.Y., Guo, Z.T., Wang, L., Wu, H.B., Wang, G., Zhou, L.P.,
413 Han, J.M. and Liu, T.S.: Distribution of carbon isotope composition of modern soils
414 on the Qinghai-Tibetan Plateau. *Biogeochemistry*, 70, 273–297, 2004.

415 Macko, S.A., and Estep, M.L.F.: Microbial alteration of stable nitrogen and carbon
416 isotopic composition of organic matter. *Organic Geochemistry*, 6, 787–790, 1984.

417 McCaroll, D., Loader, N. J.: Stable isotopes in tree rings. *Quaternary Science Reviews*
418 23, 771–801, 2004.

419 Melillo, J.M., Aber, J.D., Kinkins, A.E., Ricca, A., Fry, B., and Nadelhoffer, K.J.
420 Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic
421 matter. *Plant and Soil*, 115, 189–198, 1989.

422 Morasch, B., Richnow, H.H., Schink, B., and Meckenstock, R.U.: Stable hydrogen
423 and carbon isotope fractionation during microbial toluecne degradation: mechanistic
424 and environmental aspects. *Applied and Environmental Microbiology*, 67, 4842–4849,
425 2001.

426 Nadelhoffer, K.J., and Fry, B.: Controls on natural nitrogen-15 and carbon-13
427 abundances in forest soil organic matter. *Soil Science Society of American Journal*,
428 52, 1633–1640, 1988.

429 Poage, M.A., and Feng, X.H.: A theoretical analysis of steady state $\delta^{13}\text{C}$ profiles of
430 soil organic matter. *Global Biogeochemical Cycles*, 18, GB2016, doi: 10.
431 1029/2003GB002195, 2004.

432 Rao, Z.G., Chen, F.H., Cheng, H., Liu, W.G., Wang, G.A., Lai, Z.P., and Bloemendaal,
433 J.: High-resolution summer precipitation variations in the western Chinese Loess
434 Plateau during the last glacial. *Scientific Reports*, 3, 2785, doi: 10.1038/srep02785,
435 2013.

436 Rao, Z.G., Jia, G.D., Zhu, Z.Y., Wu, Y., and Zhang, J.W.: Comparison of the carbon
437 isotope composition of total organic carbon and long-chain n-alkanes from surface
438 soils in eastern China and their significance. *Chinese Science Bulletin*, 53, 3921–3927,
439 2008.

440 Saga, R.F., Wedin, D.A., and Li, M.: The biogeography of C_4 photosynthesis: patterns
441 and controlling factors (pp. 313–373.). In: Saga, R.F., Monson, R.K. (Eds.), C_4 Plants
442 Biology. Academic Press, San Diego, California, 1999.

443 Schleser, G. H., Helle, G., Lucke, A., and Vos, H.: Isotope signals as climate proxies:
444 the role of transfer functions in the study of terrestrial archives. *Quaternary Science*
445 *Reviews*, 18, 927–943, 1999.

446 Tieszen, L.L., Senyimba, M.M., Imbamba, S.K., Troughton, J.H.: Distribution of
447 C_3 and C_4 gasses and carbon isotope discrimination along an altitudinal and Moisture

448 Gradient in Kenya. *Oecologia*, 37, 337–350, 1979.

449 Treydte, K., Frank, D.; Esper, J., Andreu, L., Bednarz, Z., Berninger, F., Boettger, T.,

450 D'Alessandro, C. M., Etien, N., Filot, M., Grabner, M., Guillemin, M. T., Gutierrez,

451 E., Haupt, M., Helle, G., Hilasvuori, E., Jungner, H., Kalela-Brundin, M., Krapiec, M.,

452 Leuenberger, M., Loader, N. J., Masson-Delmotte, V., Pazdur, A., Pawelczyk, S.,

453 Pierre, M., Planells, O., Pukiene, R., Reynolds-Henne, C. E., Rinne, K. T., Saracino,

454 A., Saurer, M., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek, M.,

455 Szychowska-Krapiec, E., Todaro, L., Waterhouse, J. S., Weigl, M., and Schleser, G.

456 H.: Signal strength and climate calibration of a European tree-ring isotope network.

457 *Geophysical Research Letters* 34: L24302, doi:10.1029/2007GL031106, 2007.

458 Vidic, N.J., and Montanez, I.P.: Climatically driven glacial-interglacial variations in

459 C-3 and C-4 plant proportions on the Chinese Loess Plateau. *Geology*, 32, 337–340,

460 2004.

461 Wang, G.A., Feng, X.H., Han, J.M., Zhou, L.P., Tan, W.B., and Su, F.:

462 Paleovegetation reconstruction using $\delta^{13}\text{C}$ of Soil organic matter. *Biogeosciences*, 5,

463 1325–1337, 2008.

464 Wang, G.A., Li, J.Z., Liu, X.Z., and Li, X.Y.: Variations in carbon isotope ratios of

465 plants across a temperature gradient along the 400 mm isoline of mean annual

466 precipitation in north China and their relevance to paleovegetation reconstruction.

467 *Quaternary Science Reviews*, 63, 83–90, 2013.

468 Wang, G.A., Jia, Y.F., and Li, W.: Effects of environmental and biotic factors on

469 carbon isotopic fractionation during decomposition of soil organic matter. *Scientific*

470 Reports, 5, 11043, doi: 10.1038/srep11043, 2015.

471 Wang, L., Lu, H.Y., Wu, N.Q., Chu, D., Han, J.M., et al.: Discovery of C₄ species at
472 high altitude in Qinghai-Tibetan Plateau. Chinese Science Bulletin, 49, 1392–1396,
473 2004.

474 Wynn, J.G., Bird, M.I., Wong, V.N.L.: Rayleigh distillation and the depth profile of
475 ¹³C/¹²C ratios of soil organic carbon from soils of disparate texture in Iron Range
476 National Park, Far North Queensland, Australia. Geochimica et Cosmochimica Acta,
477 69, 1961-1973, 2005.

478 Wynn, J.G.: Carbon isotope fractionation during decomposition of organic matter in
479 soils and paleosols: Implications for paleoecological interpretations of paleosols.
480 Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 437-448, 2007.

481 Xu, M., Wang, G.A., Li, X.L., Cai, X.B., Li, X.L., Christie, P., Zhang, J.L.: The key
482 factor limiting plant growth in cold and humid alpine areas also plays a dominant role
483 in plant carbon isotope discrimination. Frontiers in Plant Science, 6,
484 doi:10.3389/fpls.2015.00961, 2015.

485 Yang, S.L., Ding, Z.L., Li, Y.Y., Wang, X., Jiang, W.Y., Huang, X.F.:
486 Warming-induced northwestward migration of the East Asian monsoon rain belt from
487 the Last Glacial Maximum to the mid-Holocene. Proceedings of the National
488 Academy of Sciences of the United States of America,
489 www.pnas.org/cgi/doi/10.1073/pnas.1504688112

490 Yin, L.J., and Li, M.R.: A study on the geographic distribution and ecology of C₄
491 plants in China I. C₄ plant distribution in China and their relation with regional

492 climatic condition. *Acta Ecologica Sinica* (in Chinese with a English abstract), 17 (4),

493 350–363, 1997.

494 Zhu, Y., Siegwolf, R. T. W., Durka, W., and Körner, C.: Phylogenetically balanced
495 evidence for structural and carbon isotope responses in plants along elevational

496 gradients. *Oecologia*, 162, 853–863, 2010.

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514 Figures

515

516

517

518

519 Fig.1. Sketch of sampled region. Sample sites are indicated with numbers. 1, LangKaZi; 2,
520 RiKaZe; 3, NaQu; 4, NieRong; 5, ZhiDuo; 6, QuMaLai; 7, TongDe; 8, TongRen; 9, HuangYuan;
521 10, HaiYan; 11, YuZhong; 12, XiJi; 13, JingBian; 14, HengShan; 15, ShenMu; 16, HeQu; 17,
522 ZhunGeErQi; 18, FengZhen; 19, DuoLun; 20, LinXi; 21, ZhaLuTeQi; 22, WuLanHaoTe; 23,
523 AErShan; 24, YaKeShi; 25, KuDuEr; 26, GenHe; 27, BeiJiCun. Detailed information of sites is
524 shown in Table 1.

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541 Fig.2 shows the variance in surface soil $\delta^{13}\text{C}$ with MAT (a) and SMT (b) along the 400 mm isoline
542 in China. Circle represents alpine and subalpine; diamond indicates temperate steppe and
543 grassland; triangle is coniferous forest.

544

545

546

547

548

549

550

551

552

553

554

555

556
557
558
559
560

561
562

563 Fig.3 shows the variance in surface soil $\delta^{13}\text{C}$ with altitude.

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

588

589

590

591

592

593

594

Fig.4 shows the relationships between the soil $\delta^{13}\text{C}$ and latitude (a) and longitude (b).

595

596 Fig.5 shows the effects of soil types and vegetation types on the soil $\delta^{13}\text{C}$. (a.) soil types based on
 597 Chinese soil taxonomy. 1. Matti-Gelic Cambosols; 2. Hapli- Cryic Aridosols; 3. Calci-Orthic
 598 Aridosols; 4. Mottlic Calci-Orthic Aridosols; 5. Typic Calci-Ustic Isohumosols; 6. Pachi-Ustic
 599 Isohumosols; 7. Umbri-Gelic Cambosols; 8. Hapli-Ustic Argosols. (b.) soil types based on WRB.
 600 1. Cambisols; 2. Leptosols; 3. Calcisols; 4. Chernozems; 5. Umbrisols; 6. Luvisols. (c.) vegetation
 601 type. 1. Alpine grassland; 2. Alpine meadow; 3. Subalpine grassland; 4. Temperate coniferous and
 602 broad-leaved mixed forests; 5. Temperate meadow steppe; 6. Semi-desert grasslands; 7. Temperate
 603 typical steppe; 8. Frigid temperate coniferous forest. The bar in Fig.5 indicates $\pm 1\text{SD}$.

604

605 Table 1 Information of the sampling sites

No.	Site name	MAT/°C	SMT/°C	MAP/mm	Alt./m	Lat./N°	Lon./E°	Mean $\delta^{13}\text{C} / \text{‰}$	Vegetation type	Dominant species	Soil types
1	LangKaZi	-5.3	10.8	376	4492	29.06	90.39	-23.0	Alpine grassland	<i>Stipa</i> , <i>Festuca</i> and <i>Carex</i>	Matti-Gelic Cambosols (Cambisols)
2	RiKaZc	6.3	14	420	3865	29.33	88.98	-20.4	Alpine grassland	<i>Stipa</i> , <i>Festuca</i> and <i>Carex</i>	Matti-Gelic Cambosols (Cambisols)
3	NaQu	-2.2	8.2	406	4519	31.41	91.96	-23.0	Alpine meadow	<i>Kobresia</i>	Matti-Gelic Cambosols (Cambisols)
4	NieRong	-1.2	6.3	400	4731	32.09	92.27	-22.9	Alpine meadow	<i>Kobresia</i>	Matti-Gelic Cambosols (Cambisols)
5	ZhiDuo	-0.5	7	394	4360	33.77	95.66	-24.0	Alpine meadow	<i>Kobresia</i>	Matti-Gelic Cambosols (Cambisols)
6	QuMaLai	-3.3	7.4	391.7	4727	34.16	95.9	-24.0	Alpine meadow	<i>Kobresia</i>	Matti-Gelic Cambosols (Cambisols)
7	TongDe	1.2	15.8	371	3258	35.27	100.64	-21.6	Subalpine grassland	<i>Stipa</i> and <i>Hippolytia</i>	Hapl. Cryic Aridosols (Leptosols)
8	TongRen	5.2	19.5	425.7	2467	35.55	102.03	-24.0	Subalpine grassland	<i>Stipa</i> and <i>Hippolytia</i>	Hapl. Cryic Aridosols (Leptosols)
9	HuangYuan	3	13.9	408.9	2725	37.02	100.8	-22.9	Subalpine grassland	<i>Stipa</i> and <i>Hippolytia</i>	Hapl. Cryic Aridosols (Leptosols)
10	HaYan	1.5	9.5	400	3233	36.69	101.3	-23.1	Subalpine grassland	<i>Stipa</i> and <i>Hippolytia</i>	Hapl. Cryic Aridosols (Leptosols)
									Temperate coniferous and broad-leaved mixed forests		
11	YuZhong	6.6	20.1	403	2361	35.78	104.05	-23.6		<i>Pinus tabulaeformis</i>	Hapl- Ustic Argosols (Luvicols)
12	Xili	5.3	16.8	400	1982	36.02	105.88	-24.4	Temperate meadow steppe	<i>Stipa</i> and <i>Hippolytia</i>	Calci-Orthic Aridosols(Calcisols)
13	JingBian	7.8	20	395.4	1394	37.74	108.91	-24.2	Semi-desert grasslands	<i>Stipa</i> , <i>Hippolytia</i> and <i>Ajania</i>	Calci-Orthic Aridosols(Calcisols)
14	HengShan	8.5	22.2	397	1131	38.04	109.24	-23.8	Semi-desert grasslands	<i>Stipa</i> , <i>Hippolytia</i> and <i>Ajania</i>	Calci-Orthic Aridosols(Calcisols)
15	ShenMu	8.9	21.5	393	1131	38.84	110.44	-24.8	Semi-desert grasslands	<i>Stipa</i> , <i>Hippolytia</i> and <i>Ajania</i>	Calci-Orthic Aridosols(Calcisols)
16	HeQu	8.8	22.3	426	912	39.33	111.19	-22.5	Temperate meadow steppe	<i>Bohriacika</i> and <i>Pennisetum</i>	Mottic Calci-Orthic Aridosols(Calcisols)
17	ZhunGeQi	7.5	20	400	1236	39.87	111.18	-23.2	Temperate meadow steppe	<i>Stipa</i> and <i>Anemoneepidium</i>	Typic Calci-Ustic Isohumosols Chernozems
18	FengZhen	4.7	19.4	413	1236	40.45	113.19	-22.0	Temperate typical steppe	<i>Stipa</i> and <i>Anemoneepidium</i>	Typic Calci-Ustic Isohumosols Chernozems
19	DuoLun	2.4	17.7	407	1245	42.18	116.47	-22.7	Temperate typical steppe	<i>Stipa</i> and <i>Anemoneepidium</i>	Typic Calci-Ustic Isohumosols Chernozems
20	LinXi	2.2	19.9	370	928	43.44	110.08	-23.4	Temperate typical steppe	<i>Stipa</i> and <i>Anemoneepidium</i>	Typic Calci-Ustic Isohumosols Chernozems
21	ZhaLuTeQi	2.8	22.4	387	332	44.61	120.97	-22.3	Temperate meadow steppe	<i>Stipa</i> , <i>Anemoneepidium</i> and	Pach-Ustic Isohumosols (Chernozems)

22	WuLanHaoTe	4.1	20.8	416	366	46.05	121.79	-22.3	Temperate meadow steppe	<i>Filifolium</i>
23	AEiShan	-2.7	15	391	1240	47.1	119.89	-24.6	Frigid temperate coniferous forest	<i>Stipa</i> , <i>Aneuralepidium</i> and <i>Filifolium</i>
24	YaKeShi	-2.9	18.5	379	634	49.33	120.97	-23.7	Frigid temperate coniferous forest	<i>Larix gmelini</i> and <i>Betula platyphylla Suk</i>
25	KuDuEr	-5.5	17.3	402	829	49.94	121.43	-24.0	Frigid temperate coniferous forest	<i>Larix gmelini</i> and <i>Betula platyphylla Suk</i>
26	GenHe	-5.3	17.9	424	718	50.46	121.31	-26.1	Frigid temperate coniferous forest	<i>Beaula platyphylla Suk</i>
27	BeiJicun	-5.5	18.4	450.8	603	53.29	122.15	-24.2	Frigid temperate coniferous forest	<i>Larix gmelini</i> and <i>Pinus sylvestris</i> var
										<i>Umbri-Gelic Cambosols</i> (Umbrisols)
										<i>Umbri-Gelic Cambosols</i> (Umbrisols)
										<i>Umbri-Gelic Cambosols</i> (Umbrisols)
										<i>Umbri-Gelic Cambosols</i> (Umbrisols)

606 607 608 609 610 611

619
620
621
622
623

624

Table 2 shows the results from multiple regressions.

Model	R ²	Adjusted R ²	F	p-value
1	0.091	0.030	1.484	0.205
2	0.374	0.273	3.690	<0.001
3	0.297	0.195	2.911	0.004
4	0.362	0.247	3.164	0.001

625 Note: Model-1 is the multiple regression of soil $\delta^{13}\text{C}$ against MAT, MAP, altitude, latitude and longitude; For Model-2, Model-3 and Model-4, in
626 addition to taking these five environmental factors as independent variables, the soil types based on Chinese nomenclature and WRB, and the
627 vegetation types as dummy variables were separately introduced in the multiple regressions.
628

629
630
631
632
633
634
635
636

637